Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3193, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609371

RESUMO

RNA polymerases must transit through protein roadblocks to produce full-length transcripts. Here we report real-time measurements of Escherichia coli RNA polymerase passing through different barriers. As intuitively expected, assisting forces facilitated, and opposing forces hindered, RNA polymerase passage through lac repressor protein bound to natural binding sites. Force-dependent differences were significant at magnitudes as low as 0.2 pN and were abolished in the presence of the transcript cleavage factor GreA, which rescues backtracked RNA polymerase. In stark contrast, opposing forces promoted passage when the rate of RNA polymerase backtracking was comparable to, or faster than the rate of dissociation of the roadblock, particularly in the presence of GreA. Our experiments and simulations indicate that RNA polymerase may transit after roadblocks dissociate, or undergo cycles of backtracking, recovery, and ramming into roadblocks to pass through. We propose that such reciprocating motion also enables RNA polymerase to break protein-DNA contacts that hold RNA polymerase back during promoter escape and RNA chain elongation. This may facilitate productive transcription in vivo.


Assuntos
RNA Polimerases Dirigidas por DNA , Transcrição Gênica , RNA Polimerases Dirigidas por DNA/genética , Sítios de Ligação , Escherichia coli/genética , Repressores Lac
2.
Eur J Nucl Med Mol Imaging ; 51(5): 1409-1420, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38108831

RESUMO

PURPOSE: Current treatments for osteosarcoma (OS) have a poor prognosis, particularly for patients with metastasis and recurrence, underscoring an urgent need for new targeted therapies to improve survival. Targeted alpha-particle therapy selectively delivers cytotoxic payloads to tumors with radiolabeled molecules that recognize tumor-associated antigens. We have recently demonstrated the potential of an FDA approved, humanized anti-GD2 antibody, hu3F8, as a targeted delivery vector for radiopharmaceutical imaging of OS. The current study aims to advance this system for alpha-particle therapy of OS. METHODS: The hu3F8 antibody was radiolabeled with actinium-225, and the safety and therapeutic efficacy of the [225Ac]Ac-DOTA-hu3F8 were evaluated in both orthotopic murine xenografts of OS and spontaneously occurring OS in canines. RESULTS: Significant antitumor activity was proven in both cases, leading to improved overall survival. In the murine xenograft's case, tumor growth was delayed by 16-18 days compared to the untreated cohort as demonstrated by bioluminescence imaging. The results were further validated with magnetic resonance imaging at 33 days after treatment, and microcomputed tomography and planar microradiography post-mortem. Histological evaluations revealed radiation-induced renal toxicity, manifested as epithelial cell karyomegaly and suggestive polyploidy in the kidneys, suggesting rapid recovery of renal function after radiation damage. Treatment of the two canine patients delayed the progression of metastatic spread, with an overall survival time of 211 and 437 days and survival beyond documented metastasis of 111 and 84 days, respectively. CONCLUSION: This study highlights the potential of hu3F8-based alpha-particle therapy as a promising treatment strategy for OS.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Camundongos , Animais , Cães , Estudo de Prova de Conceito , Microtomografia por Raio-X , Anticorpos Monoclonais Humanizados , Osteossarcoma/diagnóstico por imagem , Osteossarcoma/radioterapia , Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/radioterapia , Linhagem Celular Tumoral
3.
bioRxiv ; 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-36711567

RESUMO

RNA polymerases (RNAPs) must transit through protein roadblocks to produce full-length RNAs. Here we report real-time measurements of Escherichia coli (E. coli) RNAP passage through different barriers. As intuitively expected, assisting forces facilitated, and opposing forces hindered, RNAP passage through LacI bound to natural operator sites. Force-dependent differences were significant at magnitudes as low as 0.2 pN and were abolished in the presence of GreA, which rescues backtracked RNAP. In stark contrast, opposing forces promoted passage when the rate of backtracking was comparable to, or faster than the rate of dissociation of the roadblock, particularly in the presence of GreA. Our experiments and simulations indicate that RNAP may transit after roadblocks dissociate, or undergo cycles of backtracking, recovery, and ramming into roadblocks to pass through. We propose that such reciprocating motion also enables RNAP to break protein-DNA contacts holding RNAP back during promoter escape and RNA chain elongation, facilitating productive transcription in vivo.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...